

ISSN No. (Print): 0975-8364 ISSN No. (Online): 2249-3255

Performance & Design Analysis of forced Draft counter to cross flow Air cooled heat exchanger at extremely low ambient temperature i.e. at - 28°C

Parag Mishra* and Dr Manoj Arya**

*Department of Mechanical Engineering,
PhD Scholar, AISECT University Bhopal, (Madhya Pradesh), India

**Department of Mechanical Engineering, MANIT Bhopal, (Madhya Pradesh), India

(Corresponding author: Parag Mishra) (Received 02 July 2016 Accepted 05 August, 2016) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: There are several sites, in the world as well as in India, where the ambient temperature reaches below 0°C to -28°C, at this temperature the fluid in heat exchanger freezes. If the fluid Freezes in Heat Exchanger, the heat exchanger ceases and it would damage the heat exchanger also. In extremely cold environments, overcooling of the process fluid may cause freezing. This may lead to tube burst, and hence protection from freezing is required to prevent plugging or damaging the tubes [2]. Heat Exchanger is designed on the basis of hot fluid temperature, cold fluid temperature & ambient temperature, but in practical sense, the ambient temperature changes throughout the year. Here we are analyzing the effect of extreme low ambient temperature on Forced Draft Counter to Cross flow Air Cooled Heat Exchanger, Here, we have taken the temperature of surrounding air, as -28°C. Here, we are studying the performance & design analysis of Air Cooled heat exchanger at extremely low ambient temperature. In this we are doing the thermal design of forced draft counters to cross flow Air Cooled heat exchanger at extremely low ambient temperature i.e. at -28°C. The most important parameter, while taking into consideration of designing Air Cooled Heat Exchanger is permissible /minimum tube skin temperature. There are various fluids such as Diethanolamine or Lean DEA which are used in various industries like oil Refinery, the temperature at which this fluid starts freezes is 9°C. So, as to protect the fluid from freezing, we need an equipment which maintains the temperature of ambient air & fluid according to their pour point & freezing temperature. For this, we can use the steam coil to raise the temperature of ambient air & fluid. If the fluid Freezes in Heat Exchanger, the heat exchanger ceases and it will damage the heat exchanger also. For this reason, we use the steam coil.

Keywords: Thermal Design, counter to cross flow heat exchanger, permissible/minimum tube skin temperature, lean dea, extremely low ambient temperature

I. INTRODUCTION

Heat Exchanger is designed on the basis of hot fluid temperature, cold fluid temperature & ambient temperature, but in practical sense, the ambient temperature changes throughout the year. There are several sites, in India as well as in world, where the ambient temperature reaches below 0°C, that is freezing temperature. We know that in extreme low ambient temperature the fluid in the Air cooled heat exchanger freezes & this may lead to the tube burst & fluid freeze. At low ambient temperature the fluid in heat exchanger freezes. If the fluid Freezes in Heat Exchanger, the heat exchanger ceases and it would damage the heat

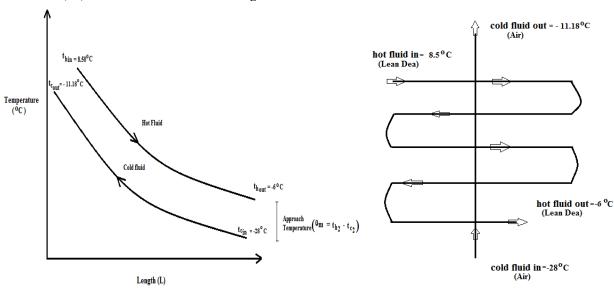
exchanger also. In extremely cold environments, overcooling of the process fluid may cause freezing. There are various fluids such as Diethanolamine or Lean DEA are used in Refinery, the temperature at which this fluid starts freezes is 9°C. So, as to protect the fluid from freezing

The process parameters/boundary conditions for thermal design of Air Cooled heat Exchanger are-

Flow rate of hot & cold fluid
Inlet & outlet temperature of hot & cold fluid
Inlet temperature of cold fluid
Allowable pressure drop [1]

II. OBJECTIVES

- 1. The main objective of this master thesis is to give the idea for thermal design of Forced Draft Counter to Cross Flow Air Cooled Heat Exchanger at extremely low ambient temperature, as there are lots of problems associated, while designing an Air Cooled Heat Exchanger.
- 2. In this research paper we will analyze the effect of ambient temperature on Forced Draft Counter to Cross flow Air Cooled Heat Exchanger. Here, we have taken the temperature of surrounding air, as -28°C. Here, we are studying the performance & design analysis of Air Cooled heat exchanger at extremely low ambient temperature.
- 3. To give the thermal design & procedure of Air cooled heat exchanger counter to cross flow at extremely low ambient temperature.
- 4. To discuss the various challenges while designing the Counter to Cross Flow Heat Exchanger.


Thermal Design of forced draft counter to cross flow heat exchanger for extremely low ambient condition, i.e. -28°C-

In this we are doing & analyzing the thermal design of forced draft counters to cross flow Air Cooled heat exchanger at extremely low ambient temperature i.e at -28°C. The most important parameter, while taking into consideration of designing Air Cooled Heat Exchanger is permissible /minimum tube skin temperature At this, the temperature of surrounding air, i.e. temperature of cold fluid (air) is -28°C. Here we have gone to

extremely low ambient temperature i.e -28°C, By previous records of temperature on some particular locations, we have come to the conclusion that in extreme cases, the temperature of these locations falls to -28°C. In this we have done the thermal design & performance analysis of forced draft counter to cross air heat exchanger at extremely low ambient conditions, so we have taken -28°C temperature for designing & performance analysis of Air Cooled Heat Exchanger. The most important parameter , while taking into consideration of designing Air Cooled Heat Exchanger is permissible /minimum tube skin temperature .In this forced draft counter to cross flow air cooled heat exchanger, the process fluid is lean dea. The pour point of any fluid can be defined as that point, when fluid ceases to flow i.e. fluid start freezing at this temperature

For extremely low atmospheric conditions, i.e. extremely low ambient temperature is- 28°C, the process parameters are-

- a). Flow rate of hot fluid (lean dea) = 94.526 (1000-kg/h)
- b). Flow rate of cold fluid (air) = 300.262 (1000-kg/h)
- c). Inlet temperature of hot fluid $= 8.5^{\circ}$ C
- d). Outlet temperature of hot fluid= -6 °C
- e). Inlet temperature of cold fluid (air)= -28 °C
- f). Allowbale pressure drop of hot fluid =0.710kgf/cm²
- g). Inlet pressure of hot fluid = 2.133kgf/cm²
- h). Altitude

Nomenclature:

Hot fluid (lean dea) enters in Air Cooled Heat Exchanger $= t_{hin} = 8.5^{\circ}\text{C}$ Hot fluid (lean dea) leaves the Air Cooled Heat Exchanger $= t_{hout} = -6^{\circ}\text{C}$ Cold fluid (air) enters in Air Cooled Heat Exchanger $= t_{cin} = -28^{\circ}\text{C}$ Cold fluid (air) leaves the Air Cooled Heat Exchanger $= t_{cout} = -11.18^{\circ}\text{C}$ Change in hot fluid(lean dea) temperature $\Delta t_h = t_{hin}$ - $t_{hout} = 8.5^{\circ}C$ -(-6 $^{\circ}C$)=14.5 $^{\circ}C$

Change in cold fluid (air) temperature $\Delta t_c = t_{cout}$ - t_{cin} = -11.18 – (-28) =16.82°C

Approach Temperature = $^{\theta}m_1 = t_{hout}$ - t_{cin} = -6 $^{\circ}C$ -(-28 $^{\circ}C$) = 22 $^{\circ}C$

Approach Temperature = $^{\theta}m_2 = t_{hin}$ - t_{cout} =8.5°C - (-11.18°C) =19.68°C

There are two different approach temperatures, but in counter to cross flow heat exchanger, we consider the Approach Temperature = ${}^{\theta}m_1 = t_{hout} \cdot t_{cin}$

$$= -6 \, {}^{\circ}\text{C} - (-28 \, {}^{\circ}\text{C})$$

$$= 22 \, {}^{\circ}\text{C}$$

Only this approach temperature is important, while designing the forced draft counter to cross flow heat exchanger.

The most important parameter, while taking into consideration of designing of Air Cooled Heat Exchanger is Tube skin temperature. In this Forced draft counter to cross flow Air Cooled heat exchanger the process fluid is lean dea. We know that, the pour point of lean dea is 8°C and as per API 661 guidelines of heat exchanger design,

The permissible tube skin temperature = pour point of fluid + 9° C

$$= 8 \, {}^{\circ}\text{C} + 9 \, {}^{\circ}\text{C}$$

$$=17^{\circ}C$$

So, permissible tube skin temperature of Air Cooled Heat Exchanger is 17°C, but in this case it goes to -12.73°C, in such condition fluid in the heat exchanger ceases resulting in exchanger failure & tube bursts .So, this design of Air Cooled Heat Exchanger is Unsafe & Fail.

By using thermal design software we found the following properties of hot fluid (lean dea) & cold fluid (Air)-Stream properties of hot fluid side fluid (lean dea) –

		Strea	am Proj	perties			
Rating-Horizontal a	air-cooled heat e	xchanger foi	rced draft	countercurre	ent to cross		KH Units
Hot Tubeside Flui			Inlet			Outlet	
Fluid name				Lear	DEA		
Temperature	(C)		8.50			-6.00	
Pressure	(kgf/cm2A)		2.133			1.318	
Weight fraction val	por ()		0.0000			0.0000	
Vapor Pro	perties						
Density	(kg/m3)						
Viscosity	(cP)						
Conductivity	(kcal/hr-m-C)						
Heat capacity	(kcal/kg-C)						
Molecular weight	()						
Liquid Pro	perties						
Density	(kg/m3)	1	044.53			1053.83	
Viscosity	(cP)		4.1136			6.6665	
Conductivity	(kcal/hr-m-C)		0.4019			0.3929	
Heat capacity	(kcal/kg-C)		0.8877			0.8817	
Molecular weight	()		О			О	
Latent heat	(kcal/kg)						
Surface tension	(dyne/cm)		0.0000			0.0000	
Molar Com	position	Vapor	Liquid	K-Value	Vapor	Liquid	K-Value
1 [New User-De	efined]						

Stream properties of cold outside fluid (Air)

		S	Stream	Properti	es		
Rating-Horizontal a	air-cooled heat e	xchanger for	ced draft	countercurr	ent to cross		IKH Units
Cold Outside Flui			Inlet				
Fluid name	1						
Temperature Pressure Weight fraction va	(C) (kgf/cm2A) por ()		-28.00 1.031 1.0000			-11.18 1.030 1.0000	
Vapor Pro	perties						
Density Viscosity Conductivity Heat capacity Molecular weight	(kg/m3) (cP) (kcal/hr-m-C) (kcal/kg-C) ()		1.4373 0.0158 0.0189 0.2401 28.96			1.3450 0.0166 0.0200 0.2401 28.96	
Liquid Pro	perties						
Density Viscosity Conductivity Heat capacity Molecular weight Latent heat Surface tension	(kg/m3) (cP) (kcal/hr-m-C) (kcal/kg-C) () (kcal/kg) (dyne/cm)		 			 	
Molar Com	position	Vapor	Liquid	K-Value	Vapor	Liquid	K-Value

Physical properties of hot tube side (lean dea) at various sections of forced draft counters to cross flow Air Cooled heat exchanger at normal ambient temperature

Properties Profile Monitor											
Rating-Horizontal air-cooled heat exc	han	aer force	d draft cou	ıntercurre	nt to cross	flow				MK	H Units
Physical Properties Profile: Hot Tubeside (Lean DEA)											
Reference pressure, (kgf/cm2A)		= 2.133)									
, , , , , , , , , , , , , , , , , , , ,	(P)	1	2	3	4	5	6	7	8	9	10
Temperature, (C)	`1´	8.50	8.00	7.50	7.00	6.50	6.00	5.50	5.00	4.50	4.00
Heat duty/flow rate, (kcal/kg)	1	0.0000	0.4438	0.8875	1.3311	1.7745	2.2179	2.6612	3.1044	3.5474	3.9904
Weight fraction vapor	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Liquid Properties											
Density, (kg/m3)	1	1044.53	1044.85	1045.17	1045.49	1045.81	1046.13	1046.46	1046.78	1047.10	1047.42
Viscosity, (cP)	1	4.1136	4.1792	4.2460	4.3142	4.3838	4.4547	4.5270	4.6007	4.6760	4.7527
Thermal conductivity, (kcal/hr-m-C)	1	0.4019	0.4016	0.4012	0.4009	0.4006	0.4003	0.4000	0.3997	0.3994	0.3991
Enthalpy, (kcal/kg)	1	0.0000	-0.4438	-0.8875	-1.3311	-1.7745	-2.2179	-2.6612	-3.1044	-3.5474	-3.9904
Specific heat, (kcal/kg-C)	1	0.8877	0.8875	0.8873	0.8871	0.8869	0.8867	0.8864	0.8862	0.8860	0.8858
Surface tension, (dyne/cm)	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Critical pressure, (kgf/cm2A)	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Latent heat, (kcal/kg)	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Rating-Horizontal air-cooled heat ex	char	aer force	d draft cou	ıntercurrei	nt to cross	flow				MK	H Units
Physical Properties Profile: Hot To						-					
Reference pressure, (kgf/cm2A)	(P1	l= 2.133)									
	(P)	11	12	13	14	15	16	17	18	19	20
Temperature, (C)	1	3.50	3.00	2.50	2.00	1.50	1.00	0.50	1.184e-3	-0.50	-1.0
Heat duty/flow rate, (kcal/kg)	1	4.4332	4.8760	5.3187	5.7612	6.2036	6.6460	7.0882	7.5304	7.9724	8.414
Weight fraction vapor	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Liquid Properties											
Density, (kg/m3)	1	1047.74	1048.06	1048.38	1048.70	1049.02	1049.34	1049.66	1049.98	1050.30	1050.62
Viscosity, (cP)	1	4.8310	4.9109	4.9924	5.0755	5.1603	5.2469	5.3352	5.4254	5.5174	5.6114
Thermal conductivity, (kcal/hr-m-C)	1	0.3988	0.3985	0.3981	0.3978	0.3975	0.3972	0.3969	0.3966	0.3963	0.396
Enthalpy, (kcal/kg)	1	-4.4332	-4.8760	-5.3187	-5.7612	-6.2036	-6.6460	-7.0882	-7.5304	-7.9724	-8.414
Specific heat, (kcal/kg-C)	1	0.8856	0.8854	0.8852	0.8850	0.8848	0.8846	0.8844	0.8842	0.8840	0.883
Surface tension, (dyne/cm)	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Critical pressure, (kgf/cm2A)	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Latent heat, (kcal/kg)	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000

			Propert	ies Pro	file Mor	nitor					
										MK	H Units
Rating-Horizontal air-cooled heat exc	chan	ger force	d draft cou	untercurre	nt to cross	flow					
Physical Properties Profile: Hot Tu	ubes	side (Lea	n DEA)								
Reference pressure, (kgf/cm2A)	(P1	l = 2.133									
	(P)		22	23	24	25	26	27	28	29	30
Temperature, (C)	1	-1.50	-2.00	-2.50	-3.00	-3.50	-4.00	-4.50	-5.00	-5.50	-6.00
Heat duty/flow rate, (kcal/kg)	1	8.8561	9.2979	9.7395	10.1810	10.6224	11.0637	11.5049	11.9460	12.3870	12.8280
Weight fraction vapor	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Liquid Properties											
Density, (kg/m3)	1	1050.94	1051.27	1051.59	1051.91	1052.23	1052.55	1052.87	1053.19	1053.51	1053.83
Viscosity, (cP)	1	5.7073	5.8051	5.9051	6.0071	6.1113	6.2177	6.3264	6.4373	6.5507	6.6665
Thermal conductivity, (kcal/hr-m-C)	1	0.3957	0.3953	0.3950	0.3947	0.3944	0.3941	0.3938	0.3935	0.3932	0.3929
Enthalpy, (kcal/kg)	1	-8.8561	-9.2979	-9.7395	-10.181	-10.622	-11.064	-11.505	-11.946	-12.387	-12.828
Specific heat, (kcal/kg-C)	1	0.8836	0.8833	0.8831	0.8829	0.8827	0.8825	0.8823	0.8821	0.8819	0.8817
Surface tension, (dyne/cm)	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Critical pressure, (kgf/cm2A)	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Latent heat, (kcal/kg)	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000

 $Physical\ properties\ of\ cold\ outside\ tube\ (Air)\ at\ various\ sections\ of\ forced\ draft\ counters\ to\ cross\ flow\ Air\ Cooled\ heat\ exchanger\ at\ normal\ ambient\ temperature$

			Prop	erties F	<u>Profile I</u>	<u> Monitor</u>						
										MK	MKH Units	
Rating-Horizontal air-cooled heat exc			d draft cou	untercurrer	nt to cross	flow						
Physical Properties Profile: Cold (= 1.031)										
Reference pressure, (kgf/cm2A)	(P)	= 1.031) 1	2	3	4	5	6	7	8	9	10	
Temperature, (C)	1	-11.18	-11.76	-12.34	-12.92	-13.50	-14.08	-14.66	-15.24	-15.82	-16.40	
Heat duty/flow rate, (kcal/kg)	1	4.0384	3.8991	3.7599	3.6206	3.4814	3.3421	3.2029	3.0636	2.9244	2.7851	
Weight fraction vapor	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Vapor Properties												
Density, (kg/m3)	1	1.3450	1.3480	1.3510	1.3540	1.3570	1.3600	1.3631	1.3662	1.3692	1.3723	
Viscosity, (cP)	1	0.0166	0.0166	0.0166	0.0165	0.0165	0.0165	0.0164	0.0164	0.0164	0.0163	
Thermal conductivity, (kcal/hr-m-C)	1	0.0200	0.0200	0.0200	0.0199	0.0199	0.0198	0.0198	0.0198	0.0197	0.0197	
Enthalpy, (kcal/kg)	1	0.0000	-0.1393	-0.2785	-0.4178	-0.5570	-0.6963	-0.8355	-0.9748	-1.1141	-1.2533	
Specific heat, (kcal/kg-C)	1	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	

Rating-Horizontal air-cooled heat exc	han	ger force	d draft cou	intercurrer	nt to cross	flow				MK	H Units
Physical Properties Profile: Cold C			a didit eee	intereae.	11 10 0.000	iiow					
Reference pressure, (kgf/cm2A)	(P1	= 1.031)									
	(P)	11	12	13	14	15	16	17	18	19	2
Temperature, (C)	1	-16.98	-17.56	-18.14	-18.72	-19.30	-19.88	-20.46	-21.04	-21.62	-22.2
Heat duty/flow rate, (kcal/kg)	1	2.6458	2.5066	2.3673	2.2281	2.0888	1.9496	1.8103	1.6711	1.5318	1.392
Weight fraction vapor	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
Vapor Properties											
Density, (kg/m3)	1	1.3754	1.3786	1.3817	1.3848	1.3880	1.3912	1.3944	1.3976	1.4008	1.404
Viscosity, (cP)	1	0.0163	0.0163	0.0163	0.0162	0.0162	0.0162	0.0161	0.0161	0.0161	0.016
Thermal conductivity, (kcal/hr-m-C)	1	0.0196	0.0196	0.0196	0.0195	0.0195	0.0194	0.0194	0.0193	0.0193	0.019
Enthalpy, (kcal/kg)	1	-1.3926	-1.5318	-1.6711	-1.8103	-1.9496	-2.0888	-2.2281	-2.3673	-2.5066	-2.645
Specific heat, (kcal/kg-C)	1	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.240

	untercurrer 23		flow				MK	l Units											
.031)																			
,	23							Rating-Horizontal air-cooled heat exchanger forced draft countercurrent to crossflow Physical Properties Profile: Cold Outside											
21 22	23																		
	23	24	25	26	27	28	29	30											
22.78 -23.36	-23.94	-24.52	-25.10	-25.68	-26.26	-26.84	-27.42	-28.00											
2533 1.1140	0.9748	0.8355	0.6963	0.5570	0.4178	0.2785	0.1393	0.0000											
0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000											
4073 1.4106	1.4138	1.4171	1.4205	1.4238	1.4271	1.4305	1.4339	1.4373											
0160 0.0160	0.0160	0.0159	0.0159	0.0159	0.0158	0.0158	0.0158	0.0158											
0192 0.0192	0.0191	0.0191	0.0191	0.0190	0.0190	0.0189	0.0189	0.0189											
7851 -2.9244	-3.0636	-3.2029	-3.3421	-3.4814	-3.6206	-3.7599	-3.8991	-4.0384											
2401 0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401	0.2401											
()	1.0000 4073 1.4106 0160 0.0160 0192 0.0192 7851 -2.9244	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	4073 1.4106 1.4138 1.4171 0160 0.0160 0.0160 0.0159 0192 0.0192 0.0191 0.0191 7851 -2.9244 -3.0636 -3.2029	0000 1.0000 1.0000 1.0000 1.0000 4073 1.4106 1.4138 1.4171 1.4205 0160 0.0160 0.0160 0.0159 0.0159 0192 0.0192 0.0191 0.0191 0.0191 7851 -2.9244 -3.0636 -3.2029 -3.3421	4073 1.4106 1.4138 1.4171 1.4205 1.4238 0160 0.0160 0.0160 0.0159 0.0159 0.0159 0192 0.0192 0.0191 0.0191 0.0191 0.0191 0.0191 7851 -2.9244 -3.0636 -3.2029 -3.3421 -3.4814	0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 4073 1.4106 1.4138 1.4171 1.4205 1.4238 1.4271 0160 0.0160 0.0160 0.0159 0.0159 0.0159 0.0158 0192 0.0192 0.0191 0.0191 0.0191 0.0190 0.0190 7851 -2.9244 -3.0636 -3.2029 -3.3421 -3.4814 -3.6206	0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 4073 1.4106 1.4138 1.4171 1.4205 1.4238 1.4271 1.4305 0160 0.0160 0.0160 0.0159 0.0159 0.0159 0.0158 0.0158 0192 0.0192 0.0191 0.0191 0.0191 0.0190 0.0190 0.0189 7851 -2.9244 -3.0636 -3.2029 -3.3421 -3.4814 -3.6206 -3.7599	0000 1.0000											

III. RESULTS

		Oute	ort Commons				
		Outp	ut Summa	ary			
						MKH Un	its
Rating-Horizontal air-coole	d heat exchange	er forced dra	ft countercur	rent to crossf	low		
	Conditions		Outs	side	Tubesi	de	
Fluid name Fluid condition				Sens. Gas	Lean DEA	Sens. Liquid	ı
Total flow rate	(1000-kg/hr)			300.262		94.526	
Weight fraction vapor, In/C			1.000	1.000	0.000	0.000	
Temperature, In/Out	(Deg C)		-28.00	-11.18	8.50	-6.00	1
Skin temperature, Min/Max	` ` ,		-17.74	-1.89	-12.73	3.55	
Pressure, Inlet/Outlet	(kgf/cm2A)		1.031	1.030	2.133	1.318	
Pressure drop, Total/Allow	, ,		10.840	0.000	0.815	0.710	1
Midpoint velocity	(m/s)		. 5.5 . 5	5.42		1.42	
- In/Out	(m/s)			0	1.43	1.47	
Heat transfer safety factor	()			1		1	
Fouling	(m2-hr-C/kcal)			0.000000		0.000500	1
			Exchange	er Performar	ice		
Outside film coef	(kcal/m2-hr-C)		37.33	Actual L	(1
Tubeside film coef	(kcal/m2-hr-C)		1702.55	Require	d U (kcal/m2-hr-C)		
Clean coef	(kcal/m2-hr-C)		22.743	Area	(m2)		
Hot regime		S	ens. Liquid	Overdes	<u> </u>		
Cold regime			Sens. Gas		Tube Geome	•	
EMTD	(Deg C)		20.7	Tube typ		High-finned	
Duty	(MM kcal/hr)		1.212	Tube O	()		
	Unit Ged	ometry		Tube ID	(mm)		
Bays in parallel per unit			1	Length	(mm)		
Bundles parallel per bay	>		2		io(out/in) ()		
Extended area	(m2)		2811.99	Layout		Staggered	
Bare area	(m2)		123.118	Trans pi	` ,		
Bundle width	(mm)	1	1276.	Long pit	`		
Nozzle	()	Inlet	Outlet		of passes ()		
Number	()	1	1	Number	/		
Diameter	(mm)	131.750 0.92	131.750	Tubecou	()		16
Velocity R-V-SQ	(m/s) (kg/m-s2)	887.83	0.91 879.99	Tubecot	()	ر ۱ <i>۲</i> Carbon steel	-
Pressure drop	(kgf/cm2)	4.980e-3	3.141e-3	Tube III			
Fressure drop	Fan Geo		3.1416-3	Type	Fin Geome	r y Plain round	ı
No/bay	()	onietry	2	Fins/len	gth fin/meter		
Fan ring type	()		30 deg	Fin root	gtii iii/iiietei mm		
Diameter	(mm)		2286.	Height	mm		
Ratio, Fan/bundle face are	` ,		0.40	Base thi			
Driver power	(kW)		6.34	Over fin			
Tip clearance	(mm)		11.430	Efficience			
Efficiency	` (%)		65		io (fin/bare) ()		
Airside Velocities		Actual	Standard	- Material		1060 - H14	
Face	(m/s)	2.84	3.40		Thermal Resist	ance, %	
Maximum	(m/s)	5.27	6.31	Air		46.45	
	(100 m3/min)	34.818	41.654	Tube		27.89	1
Velocity pressure	(mmH2O)	3.670		Fouling		23.76	
Bundle pressure drop	(mmH2O)	9.263		Metal		1.90	
Bundle flow fraction	()	1.000		Bond		0.00	
Bundle	85.45		Airside Press	sure Drop, %			6.03
Ground clearance	0.00	Fan guard		0.55	Hail screen		0.00
Fan ring	2.03	Fan area bl	lockage	5.94	Steam coil		0.00

		Fin	al Results					
								MKH Units
Rating-Horizontal air-cooled heat exc	hanger forced o	draft cour	ntercurrent to	cros	ssflow			
	Process	Data	Ai	rsic	le		Tubeside)
Fluid name						Lea	n DEA	
Fluid condition	(400)	21 /1)			Sens. Gas			Sens. Liquid
Total flow rate	(1000	O-kg/hr)	4 000		300.262		0.000	94.526
Weight fraction vapor, In/Out Temperature, In/Out		()	1.000 -28.00		1.000 -11.18		0.000 8.50	0.000 -6.00
Skin temperature, Min/Max		(Deg C) (Deg C)	-26.00 -17.74		-1.89		-12.73	3.55
Wall temperature, Min/Max		(Deg C)	-17.74		-1.89		-12.89	3.36
Pressure, In/Out		/cm2A)	1.031		1.030		2.133	1.318
Pressure drop, Total/Allowed	(mmH2O) (kg		10.840		0.000		0.815	0.710
Pressure Drop, A-frame reflux section		gf/cm2)						
Velocity - Midpoint	•	(m/s)	5.42				1.42	
- In/Out		(m/s)					1.43	1.47
Film coefficient, Bare/Extended	(kcal/m	2-hr-C)	852.58		37.33		1702.55	
Mole fraction inert		()						
Heat transfer safety factor		()			1			1
Fouling resistance	(m2-hr-	·C/kcal)			0.000000			0.000500
Overall coef Design (O)	4. 17	0 h= 0\	Overall Peri				47.000	
Overall coef, Design/Clean/Actual	•	2-hr-C)		/	22.743 /		17.339	
Heat duty, Calculated/Specified Effective mean temperature difference	,	kcal/hr) (Deg C)	1.2118 20.67	/	0.0000			
Lifective mean temperature difference		(Deg C)	20.07					
		Unit an	d Bundle Co	nst	ruction Informat	ion		
Bays in parallel/unit	()		1		Bundles in paral	lel/bay		2
Extended area/unit	(m2)		2811.99		Bare area/unit	•	(m2)	123.118
Extended area/bundle	(m2)		1405.99		Bare area/bundl	е	(m2)	61.559
Tubepasses/Tuberows	()	4 /	6		Number of tubes	s/bundle	()	99
Tubecount, Odd rows/Even rows	()	17 /	16		Edge seals		()	Yes
Bundle width	(mm)		1276.		Fan guard		()	Yes
Clearance	(mm)		9.525		Louvers		()	Yes
Header depth	(mm)		101.600		Steam coil		()	No
Header Box	()		05.400		Hail screen	(('	()	No
- Plate thickness	(mm)		25.400 34.925		Tube support in: - Number	rormation	()	4
- Tubesheet thickness Plenum type	(mm)		34.925 Tapered		- Number - Width		() (mm)	4 25.400
Weight/Bundle	(kg)		3649		Orientation (from	n horiz)	(deg)	0.00
Structure weight	(kg)		3347		Tubeside volum	,	(L)	386.5
Total weight, Dry / Wet	(kg)		13165	/	13937	C	(=)	000.0
Ladder/walkway weight	(kg)		2520	•	Cost Factor		()	47.3566
, ,	()/		Tube In	for			. ,	
Straight length	(mm)		8000.		Tube type			High-finned
Unfinned length	(mm)		36.000		Unheated length		(mm)	171.450
Layout	()		Staggered		Area ratio (fin/ba	,	()	22.8398
Transverse pitch	(mm)		75.000		Fins per unit len	-	(fin/meter)	433.0
Longitudinal pitch	(mm)		64.950		Fin root diamete	er	(mm)	27.000
Tube form	()		Straight		Fin height		(mm)	15.075
Outside diameter	(mm)		25.400		Fin thickness at		(mm)	0.400
Inside diameter	(mm)		21.184		Fin thickness at	τιρ	(mm)	0.189
Area ratio (out/in)	()		27.3853		Fin type		()	Plain round
Over fin diameter Tube material	(mm)	,	57.150 Carbon steel		Fin efficiency Internal tube typ	ı e	(%)	81.5 None
Fin material	Δ		1060 - H14		miernai tube typ			None
Matorial	,	aarmull	1 1000 - 1114					

		Final Res	sults		
Poting Horizontal air o	poled heat evelopeer for	and draft countarourrant	to crossflow		MKH Units
Rating-Horizontal air-co	ooled heat exchanger force Inlet Airside Velocities		to crossilow	Actual	Standard
Face velocity	iniet Airside velocities		(m/s)	2.84	3.40
Maximum velocity			(m/s)	2.0 4 5.27	5.40 6.31
Volumetric flow		(100 m ³	` '	34.818	41.654
Maximum mass velocit	У		s-m2)	7.575	
Air humidity	•		(%)		
Volumetric flow per fan	at fan inlet	(100 m ³	3/min)	17.409	
Velocity at fan inlet			(m/s)	7.07	
		Fan Descriptio	n and Fan Power		
Number of fans per bay	/		()		2
Diameter	,		(mm)		2286.
Tip clearance			(mm)		11.430
Ratio, fan area to bay f	ace area		()		0.40
Fan ring type			()		30 deg
Percent open area	- in fan guard		(%)		95
Dotio ground describe	- in hail screen		(%)		0
Ratio, ground clearance Percent blockage, othe			() (%)		5
Bundle pressure drop/			(%) (mmH2O)	9.263 /	5 3.670
Fan and drive efficience			(mmH2O) (%)	9.203 /	3.670 65
Motor power per fan-de	•		(kW)		6.34
	inimum air temperature		(kW)		0.00
Ambient temperature, r	•		(Dea C)	-17.78 /	-17.78
,		Two-Phase	Parameters		
Method	Inlet	Center	Outlet	Mix F	
Bundle flow fraction	()	1.000			
	\ /			Tubeside	Outside
	er and Pressure Drop P	arameters	()	Tubeside	
Midpoint j-factor Heat transfer		M-II O	()	0.0000	0.0058
neat transfer		Wall Correction Row Correction	() ()	0.9680	0.9856 1.0000
Midpoint f-factor		Row Correction	()	0.0105	0.1866
Pressure drop		Wall Correction	()	1.0488	1.0093
		Row Correction	()		1.0008
Reynolds number		Inlet	()	7670	12980
•		Midpoint	()	5686	12683
		Outlet	()	4930	11593
Fouling layer thickness			(mm)	0.000	0.000
Input minimum velocity			(m/s)		
Input maximum velocit			(m/s)		
Input minimum wall ter Input maximum wall ter			(Deg C)		
input maximum wan te		Decistores (I	(Deg C)		0
		•	Percent)		Over
Air	Tube	Fouling	Metal	Bond	Design
46.45	27.89	23.76	1.90	(Percent)	-16.84
A areas bornelle			Other electrication	(Percent)	F 04
Across bundle		85.45	Other obstruction	on	5.94
Fan ring		2.03	Steam coil		0.00
Fan guard		0.55	Louvers		6.03
Ground clearance		0.00	114	041-4	
	oe Nozzle (Perpendicula	•	Inlet	Outlet	
Number of nozzles		()	1	1	
Diameter		(mm)	131.750	131.750	
Velocity		(m/s)	0.92	0.91	
Nozzle R-V-SQ		(kg/m-s2)	887.83	879.99 3.141e-3	
Pressure drop		(kgf/cm2)	4.980e-3	3.141 0 -3	
i					

IV. CONCLUSION AND OUTCOME

The most important parameter, while taking into consideration for designing the Forced Draft Counter to cross flow Air Cooled Heat Exchanger is tube skin temperature. In this Forced Draft Counter to cross flow Air Cooled Heat Exchanger, the process fluid is lean dea. Here, the air acts as a cold fluid & lean dea acts as a hot fluid. The hot fluid lea dea loses its heat from 8.5°C to - 6°C & cold fluid air gains the heat from -28°C to -11.18°C, during heat exchanging process. By studying the various properties of lean dea, we come to know that ,the pour point of lean dea is 8°C & by studying API 661 guidelines for designing of Air Cooled Heat Exchanger , the minimum tube skin temperature is equal to the pour pint of fluid +9°C API Margin.

i.e. Permissible/minimum tube skin temperature = pour point of fluid (lean dea) $+9^{\circ}$ C (API Margin) = 8° C $+9^{\circ}$ C = 17 $^{\circ}$ C

By studying the properties of lean dea we come to know that the tube skin temperature at -28 °C is -12.73 °C. At- 28°C the permissible tube skin temperature is -12.73 °C, which is far below than the permissible tube skin temperature(17°C). So, the design & performance of Forced Draft Counter to Cross Flow Air Cooled Heat Exchanger is unsafe & fail & this will lead to freezing of fluid & tube burst in the Air Cooled Heat Exchanger . So, for this reason a equipment or a method is needed for heating the process fluid and to maintain the temperature of tube skin as per API guidelines. In these ambient conditions, there is a need of steam coil because at this temperature, the fluid in the heat exchanger freezes, hence there is a problem in this design. So, we require a steam coil for heating the fluid, so that tube skin temperature is maintained at 17 °C.

V. FUTURE SCOPE

For extremely low ambient temperature the fluid in the heat exchanger freezes for this A steam coil is required for heating the fluid, so that the tube skin temperature is maintained at 17°C. So we have to design a steam coil to prevent the fluid from freezing without affecting the performance of Air Cooled Counter to cross flow heat exchanger. And there arises a question that at what temperature we start the steam coil for heating the fluid to achieve maximum auxiliary power saving, energy saving & lower use of steam? In case if the fluid is

already freeze, than the fan, motor, pumps do the extra work for heating the fluid. This will lead to more power, more energy & more steam consumption.

REFERENCES

- [1]. Parag Mishra and Manoj Arya, (2016). Computational thermal design of forced draft counters to cross flow Air Cooled heat exchanger at normal ambient temperature i.e. at 38°C, *International Journal of Current Research (IJCR)*, paper accepted.
- [2]. Parag Mishra and Manoj Arya, (2016). A Review of Literature on Steam Coil for Air Cooled Heat Exchanger *International Journal of Innovations in Engineering and Technology (IJIET)*, Vol. 7, Issue 1, June 2016, page695-701 [3]. Parag Mishra and Manoj Arya, (2016). A Review of Literature on Thermal Design of Forced Draft Counter to Cross flow Air Cooled heat exchanger *International Journal of Engineering Sciences & Research Technology*, Vol. 5 Issue 4, 2016, April 2016 page 777-785.
- [4]. Rohit S. Andhare, Amir Shooshtari, Serguei V. Dessiatoun, Michael M. Ohadi (2016). Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration *Journal of Applied Thermal Engineering* Vol. **96**, 5 March 2016, Pages 178–189.
- [5]. Haitao Hu, Xiaomin Weng, Dawei Zhuang, Guoliang Ding⁻, Zhancheng Lai, Xudong Xu, (2016). Heat transfer and pressure drop characteristics of wet air flow in metal foam under dehumidifying conditions *Applied Thermal Engineering*, Vol. **93**, January 2016, Pages 1124–1134.
- [6]. Parag Mishra and Manoj Arya, (2015). Auxiliary Power Saving In Air Cooled Heat Exchanger by Fans. *International Journal of Enhanced Research in Science Technology & Engineering (IJERSTE)*, Vol. **4**, Issue 11, Page 41-48.
- [7]. Parag Mishra, Dr Manoj Arya, (2015). Auxiliary Power Saving In Air Cooled Steam Condenser by Pumps Condenser (A Heat Exchanger Used in Steam Power Plant), International Journal of Enhanced Research In Science Technology & Engineering (IJRASET), Vol. 3, Issue 11, Page 483-489.
- [8]. Alireza Vali, Gaoming Ge, Robert W. Besant, Carey J. Simonson (2015). Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger *International Journal of Heat and Mass Transfer*, Vol. 89, Pages 1258–1276.
- [9]. Parag Mishra and Manoj Arya (2015). Review of Literature on Air Cooled Steam Condenser (A Heat Exchanger Used in Steam Power Plant), *International Journal of Research in Aeronautical & Mechanical Engineering (IJRAME)*, Vol. 3, Issue 10, Oct-2015, page 1-8.

- [10]. Parag Mishra and Manoj Arya (2015). A Review of Literature on Air Cooled Heat Exchanger. *International Journal of Latest Trends in Engineering & Technology (IJLTET)*, Vol. **5**, Issue 4, Jul 2015, page 418-424.
- [11]. Rafat AL-Waked, Mohammad Shakir Nasif, Graham Morrison, Masud Behnia (2015). CFD simulation of air to air enthalpy heat exchanger: Variable membrane moisture resistance *Journal Applied Thermal Engineering*, Vol. **84**, June 2015, Pages 301–309.
- [12]. Juan I. Manassaldia, Nicolás J. Scennaa, Sergio F. Mussatia (). Optimization mathematical model for the detailed design of air cooled heat exchangers, *Journal of Energy Elsevier*, Vol. **64**, Jan 2014 Pages 734–746.
- [13]. Weifeng He, Dong Han, Chen Yue, Wenhao Pu, Yiping Dai, (2014). Mechanism of the air temperature rise at the forced draught fan inlets in an air-cooled steam condenser *Journal of Applied Thermal Engineering*, Vol. **71**, Issue 1, Pages 355–363.
- [14]. Hossein Shokouhmand, Shoeib Mahjoub, Mohammad Reza Salimpour (2014). Constructal design of finned tubes used in air-cooled heat exchangers *Journal of Mechanical Science and Technology*, Vol. **28**, page 2385-2391.
- [15]. Jeffrey P. Koplow, (2013). Heat exchanger device and method for heat removal or transfer.
- [16]. Hooman, K. Guan, Z. (2013). Advances in air-cooled heat exchangers.
- [17]. Li Li, Xiaoze Du, Lijun Yang Yan Xu, Yongping Yan. (). Numerical simulation on flow and heat transfer of fin structure in air-cooled heat exchanger *Journal of Applied Thermal Engineering*, Vol. **59**, Sept. 2013 page 77–86.,
- [18]. Ian J. Kennedya, Stephen W.T. Spencea, Gordon R. Sprattb, Juliana M. Earlya (2013). Investigation of heat exchanger inclination in forced-draught air-cooled heat

- exchangers Applied Thermal Engineering Vol. **54**, Issue 2, Pages 413–421.
- [19]. Khaled Saleha, Omar Abdelazizb Vikrant Autea Reinhard Radermachera, Shapour Azarma, (2013). Approximation assisted optimization of headers for new generation of air-cooled heat exchangers *Applied Thermal Engineering*, Vol. **61**, Issue 2, November 2013, Pages 817–824
- [20]. K. C. LEONG and K. C. TOH (1998). Shell and Tube Heat Exchanger Design Software for Educational Applications* *International Journal of Engineering Education*, Vol. **14**, Issue 3 page 217-224,1998.
- [21]. D.G. Kröger. (1996). The influence of wind on the performance of forced draught air-cooled heat exchangers, K. Duvenhage, *Journal of Wind Engineering and Industrial Aerodynamics*, Vol. **62**, page 259-277.
- [22]. M. Affan Badar, Syed M. Zubair, Anwar K. Sheikh (1993). Uncertainty analysis of heat-exchanger thermal designs using the Monte Carlo simulation technique. *Energy* Volume **18**, Issue 8, Pages 859-866.
- [23]. ASME code, Section VIII, Division 1.
- [24]. HTRI (Heat Transfer Research Institute) American Petroleum Institute, "Air-Cooled Heat Exchangers for General Refinery Service," API Standard 661, Fifth Edition, March 2002.
- [25]. American Society of Mechanical Engineers, "Performance Test Code 30."
- [26]. Theodore L. Bergman, Frank P. Incropera, David P. DeWitt, Adrienne S. Lavine. Fundamentals of Heat and Mass Transfer 7th Edition.
- [27]. Fundamentals of Heat Exchanger Design- Ramesh K. Shah, P. Sekulic, 2007 edition.
- [28]. Heat Exchanger Designing Handbook by T. K UPPAN, 2003 edition.